Computing the **Straight Skeleton** of an **Orthogonal Monotone Polygon** in **Linear Time**

Günther Eder, Martin Held, and Peter Palfrader
Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.
Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.
- $S(P)$ denotes the straight skeleton of P.
Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.
- $S(P)$ denotes the straight skeleton of P.
- We split P into its upper and lower monotone chain.
Preliminaries

- P is an orthogonal x-monotone polygon with n vertices.
- $S(P)$ denotes the straight skeleton of P.
- We split P into its upper and lower monotone chain.
- Looking at a single chain C, let $S(C)$ denote its straight skeleton.
Algorithm Setup

The arcs of $S(C)$ have only three directions: $\left(\frac{1}{1}\right)$, $\left(-\frac{1}{1}\right)$, and $\left(\frac{0}{1}\right)$.
Algorithm Setup

A face $f(e_i)$ of $S(C)$ lies inside of the half-plane slab Π_i.
Algorithm Setup

Also, $f(e_i)$ is monotone in respect its input edge as well as to a line perpendicular to it.
Algorithm Setup

Let us separate $f(e_i)$ into its left and right chain.
Algorithm Setup

We maintain the partial straight skeleton S^* during our incremental construction. It contains the left chains of all edges already inserted.
We maintain the partial straight skeleton S^* during our incremental construction. It contains the left chains of all edges already inserted, as well as two stacks R, G, e_i, and e_h.

Algorithm Setup
Algorithm Setup

We maintain the partial straight skeleton S^* during our incremental construction. It contains the left chains of all edges already inserted, as well as two stacks R and G.

e_h
e_i

R
G
Constructing $S(C)$

We start our incremental construction by adding e_1.
Constructing $S(C)$

The first arc a of the left chain of $f(e_i)$ has $\binom{1}{1}$ or $\binom{-1}{1}$ direction.
Constructing $\mathcal{S}(C)$

The first arc a of the left chain of $f(e_i)$ has $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ direction. It connects to the end of $f(e_{i-1})$'s left chain.
Constructing $S(C)$

Subsequent arcs between e_i and the edge on top of R.
Constructing $S(C)$

Subsequent arcs between e_i and the edge on top of R. The last arc of a chain ends in a ray,
Constructing $S(C)$

Subsequent arcs between e_i and the edge on top of R. The last arc of a chain ends in a ray, unfinished ghost arc,
Constructing $S(C)$

Subsequent arcs between e_i and the edge on top of R. The last arc of a chain ends in a ray, unfinished ghost arc, or bounded vertical arc.
Arc a has $\left(\frac{1}{1}\right)$ Direction

We follow with a case distinction for the next arc a added in the left chain of e_i. Arc a is a ray and we push e_i onto R.

\[
\begin{array}{c}
| e_i \\
| e_t \\
| R \\
| G \\
\end{array}
\]
Arc a has $(\overline{-1})$ Direction

Arc a is either a bounded arc or a ray.
Arc a has (-1) Direction

If the left chain of e_{i-1} terminates in a bounded arc, and a is the first arc on the left chain of e_i, it ends where the left chain of e_{i-1} ends.
Arc a has $(-1,1)$ Direction

Otherwise, we look at e_t at the top of R. If e_t does not terminate in a $(1,1)$ ray, a is a $(-1,1)$ ray, e_i is pushed onto R, and the chain is completed.
Arc a has $(-1) \binom{1}{1}$ Direction

Otherwise, the left chain of e_t terminates in a $\binom{1}{1}$ ray r. At p arc a intersects ray r. In $f(e_{i-1})$ we modify r into a bounded arc r' that ends at p, where a ends as well.
Arc a has (-1) Direction

Finally we have to process the elements of G below r' and a.
Arc a has $(-1)^n$ Direction

Finally we have to process the elements of G below r' and a.
Arc a has $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ Direction

Arc a is either a ghost arc or bounded vertical arc, starting at a point p.
Arc a has $\binom{0}{1}$ Direction

Arc a is either a ghost arc or bounded vertical arc, starting at a point p. In case a is a ghost arc we push e_i onto G.
Arc a has $\binom{0}{1}$ Direction

Otherwise, a is the line segment from p that is contained in both Π_t and Π_i.
Arc a has $\binom{0}{1}$ Direction

Otherwise, a is the line segment from p that is contained in both Π_t and Π_i.

![Diagram showing the direction of arc a and the line segments contained in Π_t and Π_i.]
Finalizing $S(C)$

- We process the elements that remain on G.
Finalizing $S(C)$

- We process the elements that remain on G.
- All arcs inserted intersect only rays or ghost arcs.
Finalizing $S(C)$

- We process the elements that remain on G.
- All arcs inserted intersect only rays or ghost arcs.

Theorem

Our incremental construction approach creates $S(C)$ in $\mathcal{O}(n)$ time.
Skeleton Merging
Skeleton Merging

\[f_u(1) \]

\[f_l(1) \]

\[a \]
Skeleton Merging

$fu(1)$

$f_l(1)$

a
Skeleton Merging

\[f_u(1) \]

\[f_i(j) \]
Skeleton Merging

\[f_u(1) \]

\[f_i(j) \]
Skeleton Merging

\[f_u(i) \]

\[f_l(j) \]
Skeleton Merging

\[f_u(i) \]

\[f_i(j) \]
Skeleton Merging

\[f_u(i) \]

\[f_l(j) \]

\[a \]
Skeleton Merging
Skeleton Merging
Skeleton Merging
Summary

- Incremental construction of $S(C)$ in linear time.
- Merge of both straight skeletons in linear time.

Questions?